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SUMMARY 

This paper is concerned with the exposition of finite element applications to combustion problems. The 
subject of computational fluid dynamics, including combustion calculations, has long been dominated by 
finite differences. Recently, however, the finite element method has emerged as a potential candidate for 
computational modelling in fluid mechanics. It is well known that reactive fluids with combustion present 
additional complications because of disparity in reaction rates commonly referred to as 'stiff. The present 
paper reviews basic questions arising from combustion problems in applications of finite element techniques 
to the solution of problems associated with chemical kinetics, diffusion, waves, convection, etc. Finally, an 
example of a hydrogen-oxygen reaction is presented for practical applications. Extension to the finite 
element modelling of turbulence, sprays, boundary layers, shock waves, etc. in combustion must await 
significant developments of numerical strategies associated with a more complete understanding of physical 
phenomena and chemical kinetics. 
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INTRODUCTION 

Combustion modelling is the numerical simulation of combustion phenomena.'V2 It describes 
the chemical and physical evolution of a complex reactive flow system by numerically solving 
the governing time-dependent conservation equations for mass, momentum and energy. 

In combustion systems, the strongly exothermic processes of fuel oxidation may give rise to 
localized reaction zones which propagate themselves into the unreacted material near them.3 
There are two distinct mechanisms of propagation: deflagration and detonation. Deflagrations 
travelling through the unburned material at subsonic velocities depend for their propagation 
on the activation of adjacent material to a reactive condition by diffusive transport processes. 
Detonations, on the other hand, propagate at  supersonic velocities by virtue of gas dynamic 
(shock) compression and heating of adjacent material, the shock itself being sustained by the 
energy released from the combustion process. In both cases, the reaction zone propagates as a 
consequence of strong coupling between the combustion chemistry and the appropriate fluid 
mechanical process. 

Solving the equations of conservation requires input data such as the species present, the 
chemical reactions that can occur, transport coefficients for viscosity, thermal conductivity, 
molecular diffusion and thermal diffusion, the equations of state for the various materials present, 
and a set of boundary, source and initial conditions. Thus, these equations contain, in principle, 
all the information we might want from the largest microscopic space scales down to the point 
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where the fluid approximation itself breaks down. Flame, detonation, turbulence phenomena 
and all multi-dimensional effects may be included in the solutions of these equations. There are 
several restrictions imposed on our modelling by the capacity of the computer memory, storage 
and processing speeds available. Thus, the solutions we arrive at are restricted and depend on 
both the time and space regimes we can afford to study and the numerical methods we have 
available to resolve them. 

Modelling combustion systems has its own particular problems because of the strong 
interaction between the energy released from chemical reactions and the dynamics of fluid 
motion. The release of chemical energy generates gradients in temperature, pressure and density. 
These gradients, in turn, influence the transport of mass, momentum and energy in the system. 
On a large scale, the gradients may generate vorticity or affect the diffusion of mass and energy. 
On a microscopic scale, they are the origin of the turbulence which drastically affects microscopic 
mixing and burning velocities. Properly describing the strong interplay between chemistry and 
fluid dynamics is the real challenge of modelling combustion. 

Our goal in this paper is to show how finite element techniques may be applied in combustion 
modelling. The subject of computational fluid dynamics, including combustion calculations, has 
been dominated by finite differences. Only recently has the finite element method emerged as a 
potential candidate for computational modelling in fluid  mechanic^.^-'^ In the sequel, we shall 
begin with introductory information on finite element applications in simple problems involved 
in sources and sinks of chemical kinetics, diffusion, waves and convection. Finally, an example 
of the hydrogen-oxygen reaction will be discussed, comparing the results with other methods. 

Combustion problems associated with turbulence20,21 and sprays22-24 represent important 
physical phenomena. The exposition of these topics, however, must await more extensive future 
research. 

COMBUSTION MODELLING 

Conservation equations 

The basic equations to solve in combustion problems include time-dependent equations for 
the conservation for mass, momentum and energy. In general, bulk viscosity, radiant heat flux, 
pressure gradient diffusion and thermal gradient diffusion with Soret and Dufour effects are 
neglected. With these assumptions, the conservation of mass, momentum and energy leads to 
the following equations. 

Conservation of mass for the mixture 

a P  
- + V. (pv )  = 0. 
at 

Conservation of mass for species 

for k species; 

(2b) 
a y  
at 

p - + p ( v . V ) Y  - p V . ( D V Y ) = w ,  

for one species using Fick’s law. 
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Conservation of momentum 

Conservation of energy 

aT a p  av . 
p at at axi pc - + pc,(v*V)T - - - (v.V)P - PV'V - ~ i j ~  

for k species 
aT aP av . 

p at at axi PC - + pc,,(v*V)T - - - (v.V)P - PV'V - ~ i j - L  

- V.(pc,DT V Y )  - V.(pc,DLeVT) = - h'o, 

using Fick's law for one species without body forces. 

Equation of state 
N 

P = p R T  1 y k / w k ,  
k =  1 

where Yk, wk, vk and f k  are the mass concentration, molecular weight, diffusion velocity and body 
force of species k ,  respectively; Leis the Lewis number, ho is the standard heat of formation, D is the 
diffusivity, R is the universal gas constant and w is the reaction rate. It is seen that the last term on 
the LHS of equation (4b) becomes V.(k V T )  if the Lewis number is unity. In most of the combustion 
problems, the body force effect may be neglected. 

The governing equations for reacting fluids differ from those for non-reacting fluids mainly in the 
form of continuity and energy equations. There are N species continuity equations in addition to 
the continuity equation for the mixture. Therefore, the variables to be solved are the mixture 
density p ,  the species mass concentrations Yk(k = 1,2,. . . , N ) ,  the velocity field v ( i  = 1,2,3), the 
temperature T and the pressure P. The N + 6 equations consist of 

1 overall mass continuity: 
N - 1 species equations: 

3 momentum equations: equation (3) 
1 energy equation: equation (4a) or (4b) 
1 equation of state: equation (5) 

It is possible to solve the energy and species equations with the diffusion velocities as unknown 
variables. In this case, however, the following additional equations are required: 

equation (1) 
equation (2b) 

1 equation relating all Yk: Y1 + Y2 + "' + YN = 1 

N x ixj  vx,= c -(vj-vi), 
j = i  Dij  

where the mole fraction X i  is given by 



992 T. J. CHUNG. Y. M. KIM AND J. L. SOHN 

The specific problems to be modelled are determined by the initial conditions, the boundary 
conditions, the set of chemical constituents and their thermophysical and chemical properties. 
These conditions often determine the choice of solution techniques. 

Problems in modelling reactive ,flows 

In the previous section, several generic problems associated with the solution of equations (1)-(7) 
were described. These problems, which must be overcome in order to accurately model transient 
combustion systems, are associated with multiple time scales, multiple space scales, geometric 
complexity and physical complexity. 

The first class of problems arises in characterizing ordinary flame and detonation by different 
time scales. These scales range over many orders of magnitude. When phenomena are modelled 
such that characteristic times of variation are shorter than the time step one can afford, the 
equations describing the phenomena are usually called ‘stiff. The equations describing many 
chemical reaction rates are stiff with respect to convection and diffusion. Two distinct modelling 
approaches-global implicit and time-split asymptotic-have been developed to solve the stiff 
 equation^.^^.^^ 

The se:ond class of problems involves the disparity in space scales occurring in combustion 
problems. To model the steep gradients at a flame front, a grid spacing of 10- cm or smaller might 
be required. To model convection, grid spacings of 1 cm might be adequate. Complex phenomena 
such as turbulence, which occur on intermediate spatial scales, present a particular modelling 
problem. 

The third set of obstacles arises because of the geometric complexity associated with real systems. 
Most of the detailed models developed to date have been one-dimensional. Thus, they give a very 
limited picture of how the energy release affects the hydrodynamics. Even though many processes 
in a combustion system can be modelled in one dimension, there are others, such as boundary layer 
growth or the formation of vortices and separating flows, which clearly require at least two- 
dimensional hydrodynamics. 

The final set of obstacles to detailed modelling concerns physical complexity. Combustion 
systems usually have many interacting species. These are represented by sets of many coupled 
equations which must be solved simultaneously. Complicated ordinary differential equations 
describing the chemical reactions, or large matrices describing the molecular diffusion process, are 
costly and increase calculation time by orders of magnitude over idealized or empirical models.27 
The fundamental processes in combustion include chemical kinetics, laminar and turbulent 
hydrodynamics, thermal conductivity, viscosity, molecular diffusion, thermochemistry radiation, 
nucleation, surface effects, evaporation, condensation, etc. Before a model of a whole combustion 
system can be assembled, each individual process must be separately understood and modelled. 
These submodels are either incorporated into the larger detailed model directly or, if the time and 
space scales are too disparate, must be incorporated phenomenologically. For example, diffusion 
and thermal conductivity between a wall and the reacting gas can be studied separately and then 
incorporated directly into a detailed combustion model. Turbulence, however, can be modelled on 
its own space scales only in idealized cases. These more fundamental models must be used to 
develop phenomenological models for use in the microscopic detailed models. Resolution and 
computational cost prevent incorporating the detailed turbulence model directly.20.21 

NUMERICAL MODELLING PRELIMINARIES 

Here, we discuss the major problems encountered in numerically solving the different types of 
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terms occurring in equations (1)-(5). Since these equations are coupled and non-linear, the rigorous 
mathematical error estimates are not available. However, it is possible to evaluate many of the 
numerical difficulties which may arise from various sources as individually characterized below: 

1. Chemical kinetics, source, and sink: 

ac 
at 
- = kc + d .  

2. Diffusion and dissipative effects: 

au a Z U  

at a x 2 .  

a2p - , P P  
a t 2 - a  -. 

a X 2  

_ -  - v- 

3. Wave equations: 

4. Convective or continuity equations: 

a 
at ax  
a f ,  --(fu). 

Evaluations of each of the cases listed above will be discussed in the following subsections. 

Chemical kinetics with source and sink 

A number of local phenomena such as source terms, d ( x ,  t ) ,  and sink terms, - k(x ,  t ) c ( x ,  t ) ,  may 
be given by 

ac 
at 
- = kc + d,  

where, if c is a two-component vector containing a thermal and a vibrational temperature, terms 
such as (kc + d )  express temperature equilibration at the rate - k. If d were a vector of chemical 
reactants, equation (8) would look like the typical kinetic rate equation. If k and c are constant, this 
equation has the analytical solution 

(9) 

The finite element analogue of equation (8) may be developed as follows: let c be approximated as 

c = m2ca (10) 
where ma is the finite element trial function, with a being the global node. Applying the orthogonal 
projections of the residual of the differential equation on the subspace spanned by test functions in 
the spatial and temporal domain, we obtain 1: [ 1: (g - kc - d )  W2dx]W d t  = 0. 

Here, W2is the spatial test function, W is the temporal test function and 5 is the dimensionless time: 

t = t / A t .  (12) 
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Choosing W, = @, (Galerkin approximation) and setting 

C,(t)=(l -<)c :+ tc :+ l ,  

the finite element equation takes the form 

or 

where 

c;i. 
- kA,,[(l - 5)C; + <C;"] - D, At 

(1 - k A t e ) ~ , , C ; + ~ = [ l  +kAt(l  -e)]A,,C;+D,, (14) 

Solving equation (14) for C:+l yields 

with 
1 +kAt( l  -0)  '= 1-kAt8  ' 

G, = [(1 - k AtB)A,,]-' Dp (20) 

Let the errros at the (n + 1)th step and the nth step be given by E:+' and E:, respectively. If these 
errors are added to equation (1 8), then 

c:+ + &:+ = q(c: + &:) + G,. (21) 

Subtracting equation (18) from equation (21) gives 
&"+ bl 1 =q&:. 

For stable solutions, we must assure that errors at the nth step do not grow at the (n -t 1)th step, 
that is 

IE:+lI < IgI. (23) 

This requirement can be met if 

r l <  1. 

In accordance with traditional definitions in the finite difference literature, the following 
classifications may be given for negative k: 

9 = 1, implicit scheme, 

6 = 0, explicit scheme; 

8 = +, centred scheme. 
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To compare the results obtained above with the finite difference approach, we proceed as follows: 
the exact solution to equation (8) takes the form 

d 

whereas the finite difference analogue yields 
C"+' - C" 

At 
= k[(1 - ()Cn + {C""] + d .  

Equation (27) can be solved for Cn+' 

or 

where 

1 + kAt(1  - 5 )  
1 - k A t (  

At 
d ,  Cn+l= '"+ 1 - kAt{  

1 + kAt(1 - () 
E =  

G =  " d .  

1 - k A t (  ' 

1 - k A t 4  

It is interesting to note that equation (29) is quite similar to equation (18). An alternative form of 
the solution to equation (28) may be written as 

C " + ' = E  ( c(O)+- a > :  - - 9  

where E is considered to be a finite difference approximation to the exponential function appearing 
in equation (26). The best approximation to the exponential occurs when ( = 1/2: 

(k At)' (k At)3 
2 4 

E =  1 + k A t + - + - + . . . ,  

which is correct up to the second order and has a third order error term (kAt)3/12. 
With linear finite element trial and test functions for both the spatial and temporal domains, it 

would be clear that the results obtained in equations (27)-(31) can be reproduced. If higher order 
trial and test functions are chosen, then the formula given by (20) can be modified to provide highly 
sophisticated schemes both in spatial and temporal approximations. 

The solutions for k < 0, d = 0 and c(0) = 1 using the linear finite element solutions are shown in 
Figure 1.  It is seen that if - k At is small, all of the numerical solutions are stable. For - k At = 2, 
however, the explicit scheme is violently unstable. This trend occurs when the equation is 'stiff, as 
characterized by 

This situation also arises when the implicit parameter q or E becomes negative. The implicit scheme 
is unconditionally stable, but for large values of - k At, accuracy deteriorates rapidly, which is 
basically the same conclusion for standard finite difference schemes. 
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1 
2 - k A t  = 

t 
I t 

0 1  2 3 4 0 1  2 3  

c y c l e s  (At) c y c l e s  ( t t )  

- k A t  = 2 7 

- 
0 1 2  3 '  

c y c l e s  ( A t )  

Figure 1. Comparisons of finite element solutions with analytical solutions for chemical kinetics (concentration vs. 
cycles):. . . . . explicit; --- centred; -. - implicit; ~ analytical 

Diffusion equations and dissipative effects 

Consider a simple diffusion equation of the form 

a+, t) - azU(x, t) 
at a x 2  

- v- 

The finite element equation corresponding to this is 

or 

where 

Solving for u:+ gives 

with 
C,, = A,, + 8 AtB,,, 
Dy,=A,p-(l -8)AtB,p. 

(33) 

For an explicit scheme, 8 = 0, we have Cay = A,, and D,, = A,, - AtB,,. The errors at 

(40) 

(41) 

stations n + 1 and n are 
E:+l  - 

- S a p $ ,  

where gap is the amplification matrix 

gap = 6,p - AtA,;' B,p. 
To ensure stability, we must maintain 
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In view of equations (39) and (40), and setting E:+ = A&:, we write 

b a s  - 1 6 a P ) E ;  = 0. (43) 

The stability of the solution to equation(37) can be assured if each and every eigenvalue 
la of the amplification matrix (41) is made smaller than unity: 

< 1. (44) 
Obviously, the largest eigenvalue, called the spectral radius, governs the stability. Since 
there exists a bound for At outside of which stability can no longer be maintained, the explicit 
scheme here is said to be 'conditionally stable'. Note that At can be explicitly determined from 
equation (41) satisfying equation (44). 

The amplification matrix for the implicit scheme, 8 # 0, is identified as 

gap = C,' Dyp. (45) 
It is clear that At is implicit and cannot be determined explicitly. For a predetermined At, however, 
it is only possible to examine whether or not the stability criterion, equation (44), can be satisfied. 
The advantage of an implicit scheme is that, however large At is, the amplification matrix will 
always satisfy the requirement of equation (42), leading to an 'unconditionally stable' situation. 

To provide discussions equivalent to the finite difference point of view, we may consider a 
finite element system consisting of two one-dimensional linear elements with global node numbers 
1,2 and 3 corresponding to the finite difference nodes i - 1, i and i + 1, respectively. The assembled 
matrix equations for A,, and B,, are 

L 

where N and M denote local nodes, e = 1,. . . , E refer to local elements, and A!$: is the Boolean 
matrix for assembly. Expanding the second equation corresponding to the global node 2 or the 
finite difference node i, we obtain 

Notice that this is identical to the standard finite difference equation written at the node i except 
for the factor 1/3 on the RHS. 

If the spatial variation eikAx is assumed, where i is the complex unit, it can be shown that 
equation (46) takes the form 

un+'(k) - u"(k) 3v8 3v(i - e) 
- - -~ (1 - C O S ~ A X ) U " + ' ( ~ ) -  (1 - cos k Ax)u"(k), (47) 

. At Ax2 A x  

from which the amplification factor may be calculated: 

3v(l - 8)At 
1 -  (1 - cos k AX) 

A x 2  

Ax2 

- - u"+'(k) 
u"(k) 

A ( k )  = ~ 

3ve At 
1 +- (1 - cos k AX) 

3v(l - 8)At 
1 -  (1 - cos k AX) 

A x 2  

Ax2 

- - u"+'(k) 
u"(k) 

A ( k )  = ~ 

3ve At 
1 +- (1 - cos k AX) 
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Figure 2. Comparisons of finite element solutions with analytical solutions for diffusion amplification factor:. . , , , explicit; 
_ _ _  centred; implicit; ~ analytical 

This is seen to be the same form as equation (45) expanded into a two-element system. 
The analytical solution to equation (33) in the time interval At decays by an amount 

To compare the numerical scheme with the analytical solution, we set 

3v At B=-- 
Ax2 ' 

Thus, the analytical solution is recast as 

(51) 

which is the (l/B)th root of equation (49) and expresses the amplification factor per unit 
time rather than per unit time step. Similarly, the finite element solution is written as 

A ( k )  = e - (1 /3 )Wx)2 ,  

(52)  1. 1 - B(1 - @ ( I  - C O S ~ A X )  [ 1 +BQ( l  - C O S ~ A X )  
A ( k )  = 

Based on the results of these analyses, diffusion amplification factors are plotted in Figure 2. As 
expected, the implicit scheme is always stable, but it is not as accurate as the centred scheme 
for B 6 1.0. If B is increased to 1.5, both explicit and centred schemes are unstable. In general, 
for long wavelengths (small k Ax), all schemes are stable and accurate. If wavelengths are decreased, 
numerical difficulties are likely to occur. I t  is interesting to note that the results presented here 
are identical to those obtained by finite difference methods. 

Wave equations 

The propagation of waves is represented by 

where, for example, a denotes the speed of sound in a material. The finite element analogue of 
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equation (53) now requires at least the quadratic temporal function for the time-dependent term. 
If the origin is placed at the centre of the temporal element, then 

Therefore, 
Pa =it((  - l)P",+' + (1 - p ) P ;  + $iJ(c: + l)P",+' 

1 
At2 

-- - ( P n - 1 - 2 P " + P " + 1 ) .  

The global Galerkin finite element equation takes the form 

[ 1; ($ - a'$)@.dx] W d t  = 0, 

or 

(54) 

(55 )  
where 

J w d t  
- 1  

J w d t  
- 1  

Once again, various choices are available for W. Some of the possibilities are shown below: 

W = d ( t + l ) ,  u = o ,  i=+; 
W = S(t - I), y = 1, ( = 3, central explicit; 

W = 1 - t2, y = &, i = 3, linear acceleration; 

W = +t(t + l), y = 4, ( = 3, Galerkin. 

The stability analysis may be performed in a manner similar to that for the diffusion equation, 
but the histories of two time steps behind the current time step must be maintained. 

The same physical phenomena depicted in equation (53) may be represented by two coupled 
first-order equations: 

aQ ap 
at ax  -a- ,  -= 

9- ap 
at ax - -a-. 

The global finite element equation corresponding to equation (56a) reads 

or 
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Similarly, equation (56b) takes the form 

j l ( A a p Q p  + Ea,P,)wdt=O. 

where 

- 1  1 1. 
Upon integration in the temporal domain, we arrive at 

AapP;+' + 8AtE,,Q;+' = A,,P; - (1 - @)AtE, ,Q;.  

AapQ;+l + @ A t E , , P ; + ' =  A , p Q ; - ( l  -O)AtEaDP; .  

(594 

(59b) 

Similarly, from equation (56b), we obtain 

The global finite element equation for equation (59a) written at node i as assembled from 
the two-element system reads 

2 a0 
3 At 2 
--((p;+' - p:) = - - [ - Q::; + 2Q:+' + Q;:;] 

Likewise, from equation (60a), 

Wave equations have oscillatory solutions which we shall assume vary as 

with 

w = ak. (62) 
In terms of these representations, we may deduce from equation (60) the following numerical 
dispersion relation: 

w A t  . k A x  
= a sin-, for the explicit scheme; sin __ 

2 2 

o A t  . k A x  
= a sin-, for the implicit scheme; tan ~ 

2 2 
with 

a At 
Ax 

a=-. 
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k A d 2  k A x / 2  

Figure 3. Comparisons of finite element solutions with analytical solutions for dispersion relations-of wave-like terms,, 
a = a At /Ax:  . . . . . .explicit; implicit; - analytical 

These results are shown in Figure 3. For CI = 1/2, note that both explicit and implicit schemes 
behave closely together, whereas the explicit scheme agrees exactly with the analytical solution. 
The stability for the explicit scheme deteriorates rapidly for CI > 1. The implicit scheme is stable 
but rather inaccurate for short wavelengths. It is also seen that the explicit scheme is more 
accurate if stable. Once again, the conclusions here are the same as those obtained by finite 
difference methods. 

Convective and continuity equations 

The continuity equation, 

consists of convection and diffusion because the solution is sensitive to both phase and amplitude 
errors. 

The finite element equation for equation (66) reads 

or 

where 
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t - 2 0  c y c l e  = 1 0 0  t = 1 6 @  c y c l e  = 1 0 0  

x ( c e l l  n o . )  x ( c e l l  n o . )  

Figure 4. Comparisons of finite element method (Taylor-Galerkin) with various finite difference schemes," solution of 
one-dimensional square wave propagation, Ar = 0.2, h = 1.0, u = 1.0, Courant number = 0.2 

It is seen that non-linearity may cause difficulty as well as the convection and diffusion if u is not 
constant. It u is constant, then the finite element equation is similar to equations (34) and (35). 

Figure 4 shows the results of the constant velocity square wave propagation obtained using 
several of the traditional methods and the finite element method. As is evident in these results (one- 
sided donor-cell, Lax-Wendroff, leap-frog), the pronounced undershoots and overshoots are as 
serious as numerical diffusion. Note that a solution by the flux-corrected transport (FCT) 
algorithms employs strong low-order smoothing to remove Gibbs oscillations with much weaker 
second-order smoothing needed for numerical stability of the explicit  integration^.^**^^ 

To solve equation (67), in which u is assumed to be constant using finite elements, we make 
use of the Taylor-Galerkin method,I7 since the Galerkin finite element equation, (67), will, in 
general, be unstable. Expanding equation (66) in Taylor series in time: 

p"+' - p "  A t d 2 p "  A t 2 d 3 p n  dp" 
At  2 at2 6 at3 + u ~ = o ,  

where 
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Rearranging equation (69), 

The Galerkin finite element equation for equation (72) yields 

The solution based on equation (73) in Figure 4 indicates that the finite element results are 
superior to those of donor-cell, Lax-Wendroff and leap-frog. It is expected that the FCT version of 
Taylor-Galerkin finite elements will further bring the results closer to the FCT finite differences. 

Additional discussions of combustion modelling by finite elements will be given in the following 
section. Specifically, we shall consider a problem of the hydrogen-oxygen reaction using the 
Taylor-Galerkin finite element scheme with operator splitting. 

TAYLOR-GALERKIN FINITE ELEMENT SCHEME 
WITH OPERATOR SPLITTING 

General 

One of the most efficient finite element schemes to handle stiff equations in combustion appears 
to be the Taylor-Galerkin finite elements with operator splitting.'7330 The basic principle 
underlying this method begins by expanding the variables in terms of Taylor series. Let the 
governing equations be written in the form 

with 

U =  

- 
P 

P U i  

PE 
P Yk 
. -  

P U j  

puiu j  + P J i j  
uj(PE + f') 

Pui yki 

7 

0 
N 

P y k f k i  
k =  1 

N 

k =  1 
P c y k f k i ( u i  + v k i )  

yk 

k = l  wk 
P = ~ R O T  1 -, 
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T 
hk = h: +-CPkdT. 

To 

Expanding U in terms of Taylor series, 

From equation (74) for the nth time-step 

aun a q  ac? 
a t  ax j  a x j  - +----L+H", 

where 

a F ;  aH" 
J au' a u  . A , = -  C=- 

Substituting equtions (76) and (77) into equation (79, we obtain 

Now we split equation (78) into two steps: 

Step  1 

(76) 

(77) 

Step  2 

Construct the Galerkin finite element equations from equation (79), 

Step  1 

S t e p  2 

A,, AU;+' = F: 
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where 

1005 

The above procedure is known as the two-step Taylor-Galerkin finite element method with 
computations to be carried out as follows: 

1. Set up initial conditions at t = 0. 
2. Compute derivative terms such as auj /axj ,  aTjax ,  and a Y k / a x j .  
3.  Compute values at the (n + 1/2)th time-step in each element. 
4. Compute values at the (n + 1)th time-step at  each global node. 
5. Repeat steps 2-4 until a steady state is reached. 

In what follows, we shall demonstrate the above approach in the solution of hydrogen-oxygen 
reactions in one-dimensional laminar flow. 

Hydrogen-oxygen system 

H,-air ~ y s t e m ~ l - ~ ~  as shown in Figure 5, 
Consider the quasi-one-dimensional chemically reacting supersonic flow of the premixed 

au aF 
at ax - + - = H  

with 

U =  

pYkA 

F =  
pu2 A + P A  

puHA 

in which A is the cross-sectional area, E is the stagnation internal energy per unit mass, H is 
the stagnation enthalpy per unit mass and wk is the production of species k. 

The chemical model is of the form3' 

where 

2 0 H  + H2%2H20  
kb2 

kfi = Ai(4)TNi exp( - E i / R o T ) ,  kbi = ffi/k, 
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t- 2 I 
Figure 5. Rapid expansion supersonic dimuser. Inlet data: M = 1.4, u = 1230m/s, T =  1900 K, P = 0.081 MPa, 4 = 0.3 

A ,  = (8.917 + 31.433/+ - 28.950) x 

El = 4865 (cal/mole), N ,  = - 10, 

A, = (2 + 1-333/+ - 0.833) x 

E 2  = 42,50O(cal/mole), N ,  = - 13 

(cal/moles), 

(cal/mole s) 

and 4 is the equivalence ratio. The rate of change of concentration of species j by reaction i 
becomes 

NR 

i =  1 
cpi = ai T + bi, Epi = 1 cpi Yi.  

The total enthalpy of the mixture is 

i = l  

where ho is the reference enthalpy at T = 0 K, and 
NR 

i =  1 
i?= 2 RiYi 

is the mixture gas constant. 
The operator splitting designed to maintain stability for stiffness equations is written as follows 
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U"+' = L,L,(U"), (84) 
where L, is the chemistry operator 

dU" 
L,(u") = - dt - H" = 0, 

which is integrated by the 'stiff' implicit backward differentiation formulae, and L, is the fluid 
operator 

- aufi aFj a q  . 

at axj axj 
Lf(U") = - + - -- - H" = 0, 

to be integrated by the explicit Taylor-Galerkin two-step scheme. Note that U6 is the solution 
of L,(U") = 0. The source terms Hfi are zero for the species equation. 

The Taylor-Galerkin two-step scheme for the fluid operator L, gives rise to the following 
algorithm. 

Step 1 

Step 2 

where the source terms for species equations are zero. 

trial function associated with element e, then 
Let Y ,  be the piecewise trial function associated with node 1 and Qe be the piecewise constant 

un = CU;Y,, F; = CF;~Y,, un+l12 = u : + ~ ' ~ @ ~ .  
1 1 e 

Constructing the weighted residual, we havei2 

where OE assumes the value of one within the element E and zero elsewhere: 

JQ @E@e d* = 

with 6,, being the Kronecker delta and A the area. Thus, 

This concludes step 1. We then proceed to step 2: 
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'H2 6 

4 -  

2 -  

0 .  

where H"+ ' I 2  is zero for species equations. The Galerkin finite element equations take the form 

Un+1/2 = CU;+'Yf, FJ+l12 = CFJ+1/2@e,  
1 e 

H n + 1 / 2  = E H ; + W  e ,  GJ = C GyiY,, 
e I 

. -  ..._... 

. I  , , I  . ? I . I I l  

where nj is the component of a vector normal to the surface. 
Solutions are obtained through operations as described by steps 1 and 2 above, based on 

initial conditions at the inlet shown in Figure 5.31 The initial conditions are assumed to be 
isentropic. Inlet boundary conditions are held constant at  their initial values. Note that a rapid 
expansion diffuser is chosen so that high mass fraction gradients exist near the inlet. 

In Figure 6, the time history of a hydrogen mass fraction at the first nodal point (x = 002) 
is shown. Here, the time discretization error tolerance is set at The time history of mass 
fractions shows two characteristic time scales: one associated with the formation of hydroxyl 
( N 10- s), another associated with the production of water ( N 10- s). Agreement between the 
finite element solution and the spectral finite difference method is reasonably good. A similar 
trend is observed for oxygen, as shown in Figure 7. Figure 8 demonstrates the production of 
hydroxyl and water. Axial velocity profiles for t = 0.1 s, iteration number 2500, are shown in 
Figure 9. Here again, the finite element solution agrees well with the spectral finite difference 



FINITE ELEMENT ANALYSIS IN COMBUSTION PHENOMENA 

0.24 

0 . 2 1  

0 . 1 8  

0 .15  

0 . 1 2 - ,  

0 2  
Y 

1009 

- 
- 

- 
- 

, , , , 1 ,  I , ,  , 

O e 3 0  0.27 I: 

0 . 0 5  
0.04. 

- 

'OH .... ,,. .......... ............ 

Log ( s e c )  

Figure 7. Time history of oxygen mass fraction: ~ finite element method;. .... spectral method 
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Figure 10. Axial hydrogen mass fraction profile: - finite element method;. . . . . spectral method 
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Figure 11. Axial oxygen mass fraction profile: - finite element method;. . . . . spectral method 
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Figure 12. Axial hydroxyl and water mass fraction profiles:- finite element method;. . . . . spectral method 
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m e t h ~ d . ~  The profiles of axial hydrogen, oxygen, hydroxyl and water mass fractions are depicted 
in Figures 10, 11 and 12, respectively, agreeing reasonably well with the spectral finite differences. 

CONCLUSIONS 
The finite element methods has emerged as a potential candidate for computational fluid 
dynamics’-’ and, subsequently, for reactive fluids and combustion modelling. Introductory 
expositions on sources and sinks for chemical kinetics, diffusion, waves and convection, as well as 
an example of the hydrogen-oxygen reaction have been presented. In all of these examples, the 
results are compared with those of finite differences, indicating that both methods yield basically 
the same information in simple problems. For stiff equations, Taylor-Galerkin finite elements with 
operator splitting techniques appear to be stable and accurate. 

Applications of finite elements to turbulence, sprays, boundary layers, shock waves, etc. in 
combustion problems must await extensive research in the future. Finite element applications 
dealing with non-linear, convective, stiff equations in combustion remain a great challenge in 
years to come. 

REFERENCES 

1. 

2. 

3. 
4. 
5. 
6. 
7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

H. McDonald, ‘Combustion modeling in two and three dimensions-some numerical considerations’, Progress in 
Energy and Combustion Science, 5, 97-1 22 (1979). 
E. S. Oran and J. P. Boris, ‘Detailed modeling of combustion systems’, Progress in Energy and Combustion Science, 

F. A. Williams, Combustion Theory,  Benjamin/Cummings Publishing Co., 1985. 
T. J. Chung, Finite Element Analysis in Fluid Dynamics, McGraw-Hill Book Co., New York, 1978. 
J. T. Oden and G. F. Carey, Finite Elements: Mathematical Aspects, Prentice Hall, Englewood Cliffs, 1981. 
G. F. Carey and J. T. Oden, Finite Elements: Fluid Mechanics, Prentice Hall, Englewood Cliffs, 1981. 
0. C. Zienkiewicz, R. Lohner and K. Morgan, ‘High speed inviscid compressible flow by the finite element method’, in 
J. R. Whiteman (ed.), The Mathematics of Finite Elements and Applications, V-MAFELAP, 1984, Academic Press, Ltd., 
London, 1985. 
R. Glowinsky, Q. V. Dinh and J. Periaux, ‘Domain decomposition methods for nonlinear problems in fluid dynamics’, 
Computer Methods in Applied Mechanics and Engineering, 40, 47-109 (1983). 
T. J. R. Hughes, L. Franca and M. Mallet, ‘A new finite element formulation for computational fluid dynamics: I. 
Symmetric forms of the compressible Euler and Navier-Stokes equation and the second law of thermodynamics’, 
Computer Methods in Applied Mechanics and Engineering, 54, 223-234 (1986). 
T. J. R. Hughes, M. Mallet and A. Mizukami, ‘A new finite formulation for computational fluid dynamics: 11. Beyond 
SUPG‘, Computer Methods in Applied Mechanics and Engineering, 54, 341-355 (1986). 
R. Lohner, K. Morgan and L. Kong, ‘An unstructured multigrid method for the compressible Euler equations’, in 
D. Rues and W. Kordulla (eds.), Proceedings, 6th G A M M  Conference on Numerical Methods in Fluid Mechanics, 
Vieweg Notes on Numerical Fluid Mechanics, Vol. 10, Vieweg Verlag, 1986. 
R. Lohner, K. Morgan and 0. C. Zienkiewicz, ‘An adaptive finite element procedure for high speed flows’, Computer 
Methods in Applied Mechanics and Engineering, 51, 441-465 (1985). 
T. J. Chungand J. L. Sohn,’Interactionsofcoupled acoustic and vortical instability’, AIAAJournal ,  24(10), 1582-1596 
(1986). 
T. Strouboulis, P. Devloo and J. T. Oden, ‘A moving grid finite element algorithm for supersonic flow interaction 
between moving bodies’, Proceedings, 6th International Symposium on Finite Elements in Fluid Flows, Antibes, France, 
June, 1986. 
M. Bieterman and I. Babuska, ‘An adaptive method oflines with error control for parabolic equations of the reaction- 
diffusion type’, Journal of Computational Physics, 63, 33-66 (1986). 
J. T. Oden, P. Devloo and T. Strouboulis, ‘Adaptive finite element methods for the analysis of inviscid compressible 
flow’, Proceedings, 6th International Symposium on Finite Elements in Fluid Flow, June 1986. 
J. Donea, S. Giuliani and H. Laval, ‘Time-accurate solution of advection-diffusion problems by finite elements’, 

7, 1-72 (1981). 

Computer Methods in Applied Mechanics and Engineering, 45, 123-145 (1984). 
D. N. Lee and J. I. Ramos, ‘Application of the finite element method to one-dimensional flame propagation problems’, 
AIAA Journal, 21, 262-269 (1983). 

19. J. I. Ramos, ‘The application of finite difference and finite element methods to a reaction-diffusion system in 
combustion’, in C. Taylor, J. A. Johnson and W. R. Smith (eds), Numerical Methods in Laminar and Turbulent Flow, 
Pineridge Press, Swansea, UK, 1983, pp. 1137-1 147. 



1012 T. J. CHUNG, Y. M. KIM AND J. L. SOHN 

20. P. A. Libby and F. A. Williams (eds), Turbulent Reacting Flows, Springer-Verlag, 1980. 
21. W. P. Jones and J. H. Whitelaw, ‘Modeling and measurements in turbulent combustion’, Proceedings, 20th 

22. W. A. Sirignano, ‘The formulation of spray combustion models: resolution compared to droplet spacing’, Journal of 

23. H. C.  Gupta and F. V. Bracco, ‘Numerical computations of two-dimensional unsteady sprays for applications to 

24. W. A. Sirignano, ‘Fuel droplet vaporization and spray combustion theory’, Progress in Energy and Combustion Science, 

25. L. F. Shampine and C. W. Gear, ‘A user’s view of solving stiff ordinary differential equations’, SIAM Review, 21 (1) 
1-17 (1979). 

26. R. J.  Kee and H. A. Dwyer, ‘Review of stiffness and implicit finite difference methods in combustion modeling’, 
Proceedings, 7th ICOGER,  Gottinger, FRG, 20-24, August 1979. 

27. W. C. Gardiner, (ed.), Combustion Chemistry, Springer-Verlag, 1984. 
28. J. P. Boris and D. L. Book, ‘Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works’, Journal of 

29. S. T. Zalesak, ‘Fully multi-dimensional flux-corrected transport algorithms for fluids’, Journal of Computational 

30. N. N. Yanenko, The Method ofFractional Steps, Springer-Verlag, New York, 1971. 
31. J. P. Drummond and M. Y. Hussaini, ‘Spectral methods for modeling supersonic chemically reacting flow fields’, A I A A  

32. J. S .  Evans and C .  J. Schexnayder, Jr., ‘Influence of chemical kinetics and unmixedness on burning in supersonic 

33. T. R. A. Bussing and E. M. Murman, ‘A finite volume method for the calculation of compressible chemically reacting 

International Symposium on Combustion, 1984, 233-249. 

Heat Transfer, 108, 633-639 (1986). 

engines’, A I A A  Journal, 16(10), 1053-1061 (1978). 

9, 291-322 (1983). 

Computational Physics, 11, 38-69 (1973). 

Physics, 31, 335-362 (1979). 

paper, 85-0302, January 1985. 

hydrogen flames’, A I A A  Journal, lS(2), 188-193 (1980). 

flows’, A I A A  Paper, 85-0331, January 1985. 




